Table of Contents

Summary .. 3
System Requirements .. 4
 Supported Conversion Source Systems: .. 4
 Supported Conversion Target Systems: ... 4
 Supported Conversion Target Cloud Systems: .. 5
 Installation Supported Systems: ... 5
vsphere ESXi to Hyper-V Conversion Wizard ... 6
 Hyper-V Conversion Process .. 8
 Hyper-V to AWS Conversion Wizard – Connecting to Hyper-V host and selecting VMs 8
vsphere ESXi to AWS Conversion Wizard – Connecting to host and selecting VMs 11
Conversion to Amazon Web Services (AWS) ... 13
 AWS Conversion Process .. 14
5nine V2V PowerShell Cmdlets .. 16
 VMware to Hyper-V Conversion ... 16
 Conversion Process .. 17
 Hyper-V to Microsoft Azure ... 18
Summary

5nine V2V Easy Converter quickly, easily and noninvasively migrates virtual machines to private, public and hybrid cloud environments. Built on a non-intrusive, agentless architecture, 5nine V2V Easy Converter enables automated migrations of virtual machines to Hyper-V, AWS and Azure. Any operating system that runs on Hyper-V can be converted, including virtual machines running Windows/Windows Server, RedHat, CentOS, and SUSE. Our low cost, ease of use, and agentless deployment model ensures that you complete your migration project on time and under budget.
System Requirements

Supported Conversion Source Systems:
- VMware vSphere ESXi
 - vSphere ESXi 6.5
 - vSphere ESXi 5.5
 - vSphere ESXi 5.1
 - vSphere ESXi 5.0
 - vSphere ESXi 4.1
- Guest VM:
 - Any ESXi supported guest OS
- Hyper-V Host:
 - Microsoft Windows Server 2016
 - Microsoft Windows Server 2012 R2
 - Microsoft Windows Server 2012
 - Microsoft Windows 8 Professional with the Hyper-V role enabled
 - Microsoft Windows 8.1 Professional with the Hyper-V role enabled
 - Microsoft Windows 10 Enterprise with the Hyper-V role enabled
 - Microsoft Windows 10 Professional with the Hyper-V role enabled
 - Microsoft Windows 10 Education with the Hyper-V role enabled
- Guest VM:
 - Any Hyper-V supported guest OS

Supported Conversion Target Systems:
- Hyper-V Host:
 - Microsoft Windows Server 2016
 - Microsoft Windows Server 2012 R2
 - Microsoft Windows Server 2012
 - Microsoft Windows Server 2008 R2 SP1
 - Microsoft Windows 8 Professional with the Hyper-V role enabled
 - Microsoft Windows 8.1 Professional with the Hyper-V role enabled
 - Microsoft Windows 10 Enterprise with the Hyper-V role enabled
 - Microsoft Windows 10 Professional with the Hyper-V role enabled
- Microsoft Windows 10 Education with the Hyper-V role enabled

Supported Conversion Target Cloud Systems:
- Amazon Web Services (AWS)
- Microsoft Azure

Installation Supported Systems:
- Windows
 - Microsoft Windows Server 2016
 - Microsoft Windows Server 2012 R2
 - Microsoft Windows Server 2012
 - Microsoft Windows 8 Professional
 - Microsoft Windows 8.1 Professional
 - Microsoft Windows 10 Enterprise
 - Microsoft Windows 10 Professional
 - Microsoft Windows 10 Education
vSphere ESXi to Hyper-V Conversion Wizard

The Select Source page is where the IP address or the host name of ESXi host is entered along with the user credentials to connect to the specified host. Virtual machines(s) can be selected directly from the VMware host. You can browse multiple hosts and their VMs by connecting to a vCenter Server. Please note that the best performance with the least impact to network resources is achieved by connecting directly to a VMware host and not through vCenter.

Select the host(s) and virtual machines for conversion. The current state of the VMs is displayed on the right hand side.
The VM configuration page allows you to modify the selected VM's settings.
The Select Host page allows you to select the target Hyper-V server or cluster. A list of available hosts and clusters ranked by their available resources are displayed to assist in the selection of the target.

The Host Resources page verifies resource availability for migration destination.

The Temporary Path page allows you to configure where the VM is copied to as part of the conversion process.

The summary page shows the settings defined by the wizard before starting the conversion process.

Hyper-V Conversion Process

1. The VM is shutdown and then its configuration settings are remapped from VMware (.vmx) to Hyper-V (.xml) including the name, memory, virtual networks, virtual disks, etc. set in the wizard.

2. The VM’s hard disk is copied to a temporary location from the VMware (.vmdk) to the Hyper-V (.vhd/x) format. This includes the OS and data disks.

3. A new VM is created on Hyper-V by combining the configuration file and disk.

Hyper-V to AWS Conversion Wizard – Connecting to Hyper-V host and selecting VMs
The Select Source page is where the IP address or the host name of the Hyper-V host is entered along with the user credentials to connect to the specified host.
The Select Virtual Machines page lists the available generation 1 virtual machines for conversion. The user can select one or more virtual machines.

- VHDX/VHD virtual disk conversions are supported
- **Amazon Elastic Compute (EC2)** does not support second generation VMs (with EFI and GPT)
- If the selected virtual machines are on – they will automatically be turned off before the conversion starts
vSphere ESXi to AWS Conversion Wizard – Connecting to host and selecting VMs

The Select Source page is where the IP address or the host name of ESXi host is entered along with the user credentials to connect to the specified host.
Select the host(s) and virtual machines for conversion. The current state of the VMs is displayed on the right hand side.
Conversion to Amazon Web Services (AWS)

The Amazon Credentials page is where the user selects the desired conversion target Region for Amazon Elastic Compute and provides their AWS Access Key ID and AWS Secret key.

Please note that each region is isolated from the others. There is a fixed list of regions for Amazon Web Services based on what was available at the time of the release.

Access keys (access key IDs and secret access keys) for your AWS account are required before performing conversions.

If you don’t have access keys follow the steps below:

1. Use your AWS account email address and password to sign in to the AWS Management Console.
 If you previously signed in to the console with IAM user credentials, your browser might open your IAM user sign-in page. You can’t use the IAM user sign-in page to sign in with your AWS account credentials. Instead, choose Sign-in using root account credentials to go to the AWS account sign-in page.

2. In the top right of the console, choose your account name or number. Then choose My Security Credentials.
3. Choose Continue to Security Credentials.
4. Expand the Access Keys (Access Key ID and Secret Access Key) section.
5. Choose Create New Access Key. Then choose Download Key File to save the access key ID and secret access key to a file on your computer. After you close the dialog box, you can't retrieve this secret access key again.
The AWS Configuration page is where the VM storage, name, instance type and network adapter are set.

S3 Bucket (Amazon Simple Storage Service)

Please select an Amazon S3 bucket from the list or type in a new bucket name. The selected virtual machine’s disk images will be uploaded to this bucket and will be stored there.

Select for Review

Please select the virtual machine from the drop down menu to configure it. If desired, modify the name of S3 bucket item and instance type. If the item already exists in the S3 bucket with the same name, it will be replaced.

Instance Type

The instance type represents the configuration of Amazon Elastic Compute instances such as processor type and number of vCPUs, memory size, storage, network and GPU options etc.

Migrate Network Adapters

If you want to add network adapters from the source virtual machine, select the Migrate network adapters checkbox, and then select the subnet and network adapters.

If you select the default network adapter, the virtual instance will be created. Subnets are managed in the Amazon Networking & Content Delivery service.

AWS Conversion Process

The conversion process has the following stages:
1. Uploading all disk image files to the S3 Storage service. After this operation, the files will be available in the bucket unless deleted.

2. Conversion of the files and creation of Amazon AWS EC2 Images. Images will be available in Elastic Compute service in section IMAGES/AMIs.

3. Creation and starting of the EC2 instances for each AMI. Those will be available for management in Elastic Compute service INSTANCES/Instances.
5nine V2V PowerShell Cmdlets

This functionality is only available in the full (paid) edition 5nine V2V Easy Converter.

VMware to Hyper-V Conversion

Invocation

1) Open PowerShell Window.
2) Execute the following to load the snapin:
   ```powershell
   PS C:\Users\Administrator> Add-PSSnapin 59v2v
   ```
3) Use Convert-VM cmdlet to perform conversion.
4) Once conversions succeed, Convert-VM will pass Virtual Machine Id and Hyper-V ComputerName to the pipeline, so you could use it later to configure VM.

Getting Offline Help

To list supported options use
   ```powershell
   PS C:\Users\Administrator> Get-Help Convert-VM –full
   ```

Supported Options

MANDATORY PARAMETERS

- `-s <string>` Source ESX/ESXi server
- `-sp <string>` Source host admin password
- `-su <string>` Source host admin login
- `-sv <string>` Source VM name to convert
- `-t <string>` Destination Hyper-V host (defaults to local host)
- `-tp <string>` Hyper-V host admin pass
- `-tu <string>` Hyper-V host admin login
- `-tv <string>` Destination VM name (defaults to source name)

OPTIONAL PARAMETERS

- `-cpu <int>` Override number of CPUs to value (1-4)
- `-mem <int>` Override memory size to value MB (1-32768)
- `-net <string>` Connect VM to specified virtual network
- `-vhd` Use vhd disk format (vhdx is default)
- `-start <int>` Override automatic startup action (0 - None, 1 - Restart, 2 - Always)
- `-delay <int>` Override automatic startup delay to value seconds
- `-stop <int>` Override automatic shutdown action (0 - Turn Off, 1 - Save, 2 - Shutdown)
- `-vhdpath <string>` Store VM disk files at specified path
- `-vmpath <string>` Store VM files at specified path
-temp <string> Use specified path as temporary location
-shutdown Automatically shutdown source VM prior to conversion
-startup Automatically start destination VM after conversion

Example: Converting VM

To perform a conversion using PowerShell, specify the source (VMware ESX/ESXi) host name, credentials and VM name to convert with the destination (Hyper-V) host. Use additional options to specify information to the converter, such as amount of RAM to assign, name of virtual network to connect to, and so on. It's strongly suggested to manually shutdown source VMs before proceeding with conversions to avoid data loss and VMware license limitations.

```powershell
PS C:\Users\Administrator> Convert-VM -verbose -s esxi_host -su root –sp password -sv VM_For_Conversion_Name -net vSwitch -start 2 -stop 0 -delay 60 -cpu 2 -mem 256
```

Example: Processing result using pipeline

Running VM conversion from ESXi host and passing the resulting object down to pipeline. Verbose flag turned on.

```powershell
PS C:\Users\Administrator> Convert-VM -verbose -s esxi_host -su root -sp password -sv VM_For_Conversion_Name -net vSwitch | Get-VM
```

Copyright (c) 5nine Software, Inc 2009-2017.

Conversion Process

VERBOSE: (1%) Connecting to 192.168.0.100 VMware host
VERBOSE: (10%) Connecting to WIN-TARGET_HOST Hyper-V host
VERBOSE: (20%) Getting 'VM_For_Conversion_Name' VM information
VERBOSE: (30%) Starting conversion
VERBOSE: (40%) Examining Source and Target
VERBOSE: (50%) Preparing Temporary Path
VERBOSE: (60%) Starting disks conversion
VERBOSE: (70%) Conversion...
VERBOSE: (80%) Conversion completed
VERBOSE: (85%) Cleaning up Temporary Path
VERBOSE: (90%) Creating Generation 2 VM
VERBOSE: (100%) Done
Virtual machine 'VM_For_Conversion_Name' (137EF963-522D-44B0-8101-E420896FA84C) has been converted.

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>CPUUsage(%)</th>
<th>MemoryAssigned(M)</th>
<th>Uptime</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>VM_For_Conversion_Name</td>
<td>Off</td>
<td>0</td>
<td>0</td>
<td>00:00:00</td>
<td>Operating normally</td>
</tr>
</tbody>
</table>

Hyper-V to Microsoft Azure

Two 5nine V2V Easy Converter cmdlets are to deal with migration to Windows Azure Classic and Windows Azure Resource Manager type deployments.

Requirements:

1. V2V needs to be installed on the Hyper-V server to access guest virtual hard disks
2. azure-powershell 1.7.0 or later needs to be installed

 (https://github.com/Azure/azure-powershell/releases/download/v1.7.0-August2016/azure-powershell.1.7.0.msi)
3. .Net Framework 4.5 needs to be installed

SYNTAX

- Import-VMDisks -OS <string> -Container <uri> -StorageKey <string> -Source <string> [-VM <IPersistentVM>]
- Import-VMDisksRM -OS <OperatingSystemTypes> {Windows | Linux} -Container <uri> -StorageKey <string> -Source <string> [-VM <PSVirtualMachine>]

Parameters:

- OS - Operating System Type (Windows on Linux) of the Hyper-V guest
- Container - Full Uri of container used to store imported virtual hard disk of the Azure Storage Account, e.g. https://<storage_account>.blob.core.windows.net/vhds/
- StorageKey - Key used to Access Storage Account
- Source - Hyper-V host name

While exporting disk drives first IDE drive will be assigned as OS disk, while remaining as data disks.

Using with Microsoft Azure Classic

1. Preparation - you need to be registered on Microsoft Azure, with an active subscription. You should have created Azure Storage Account (classic) using the azure portal (portal.azure.com)
2. Start powershell and load snap-in

Add-PSSnapin 59v2v
2.1. To login to Azure type

Add-AzureAccount

2.2. If you have multiple subscriptions - choose correct one with

Select-AzureSubscription -SubscriptionId <Subscription-Id>

2.3. Export storage account keys

$StorageKey = Get-AzureStorageKey -StorageAccountName <storage_account>

2.4. Creating Azure VM using local Hyper-V guest disks (please shutdown guest prior to conversion!). In the example below "CentOS 7" guest is uploaded to Azure (Northern Europe) (storage container is created if it does not exists), new VM (<new_azure_vm_name>) and corresponding service (<azure_service_name>) are created, also public access to SSH and HTTP ports are allowed:

New-AzureVMConfig -Name <new_azure_vm_name> -InstanceSize Small -AvailabilitySetName 'RDGW' -DiskName 'CentOS7' |
Import-VMDisks -Container "https://<storage_account>.blob.core.windows.net/centos7/" -StorageKey $StorageKey.Primary -Source "CentOS 7" -OS Linux |
Add-AzureEndpoint -Protocol tcp -LocalPort 22 -PublicPort 22 -Name 'SSH' |
Add-AzureEndpoint -Protocol tcp -LocalPort 80 -PublicPort 80 -Name 'HTTP' |
New-AzureVM -Location 'Northern Europe' -ServiceName <azure_service_name> -Verbose

Once this command succeeds, you will be able to establish ssh connection and navigate to http://<azure_service_name>.cloudapp.net/

3. Complete.
Using with Microsoft Azure Resources Manager

1. Preparation: you need to be registered on Azure, with an active subscription.
 1.1. You should have created Azure Storage Account (Resource Manager) using Azure portal (portal.azure.com). Be sure to select “General purpose” as a Storage Account type (vs Blob storage), the later does not work with page blobs.
 1.2. At least one virtual network and subnet should be configured with Azure portal. In the sample below those are called RMVNET/RMVSUBNET

2. Start powershell and load snap-in

 Add-PSSnapin 59v2v

2.1. To login to Azure type

 Login-AzureRmAccount

 or

 Login-AzureRmAccount -SubscriptionId <Subscription-Id>

 to select subscription.

2.2. Create network interface for the new VM (skip this step if you have it already)

 $Subnet = Get-AzureRmVirtualNetwork -Name 'RMVNET' –ResourceGroupName <rm_resource_group> | Get-AzureRmVirtualNetworkSubnetConfig -Name RMSUBNET

 New-AzureRmNetworkInterface -Name RMNIC_1 -ResourceGroupName <rm_resource_group> -Location 'North Europe' -SubnetId SubnetID.Id

2.3. Export storage account keys and NIC ids

 $StorageKey = Get-AzureRmStorageAccountKey –Name <rm_storage_account> -ResourceGroupName <rm_resource_group> $NIC = Get-AzureRmNetworkInterface -Name RMNIC_1 –ResourceGroupName <rm_resource_group>

2.4. Creating Azure VM using local Hyper-V guest disks (please shutdown guest prior to conversion!). In the example below "testing" guest is uploaded to Azure (Northern Europe) (storage container is created if it does not exists), new VM (<new_azure_vm_name>) is created:

 New-AzureRmVMConfig -VMName <new_azure_vm_name> -VMSize "Standard_A1" | Import-VMDisksRM --Container "https://<rm_storage_account>.blob.core.windows.net/testing/" --StorageKey $StorageKey.Key1 -Source testing -OS Linux -Verbose | Add-AzureRmVMNetworkInterface -Id $NIC.Id | New-AzureRmVM -Location "Northern Europe" --ResourceGroupName <rm_resource_group>

Troubleshooting

1) If you receive an error during installation, please check if requirements are met.
2) If you receive a "Forbidden" error message from Azure during upload, then check if you selected storage keys correctly.
3) If you receive a "Bad request" error message from Azure during upload, then check storage account type to be "general purpose".
4) If you receive a "Not found" error message from Azure during upload, then check if you specified the storage account url correctly.